What Exxon Knew

Clearly, there's going to be an impact so I'm not disputing that increasing CO2 emissions in the atmosphere is going to have an impact. It'll have a warming impact. How large it is, is very hard for anyone to predict and depending on how large it is then projects how dire the consequences are. In the fall of 2015, an investigation by the Pulitzer Prize winning Inside Climate News as well as the Los Angeles Times and the Colombia School of Journalism revealed a trove of documents from scientists inside oil giant ExxonMobil, showing that Exxon scientists understood the mechanisms and consequences of human caused climate change as early as the late 1970s and early 1980s. New York State Attorney General Eric Schneiderman recently subpoenaed oil giant ExxonMobil, apparently seeking documents that might show the company had downplayed the risks to profits and therefore to investors of stronger regulations on burning fossil fuels. The documents show Exxon understood a clear scientific consensus existed on the greenhouse effect, that the build-up of carbon dioxide in the atmosphere could become a serious problem and mentioned the distinct possibility of effects that could be catastrophic for a substantial fraction of the Earth's population.

Exxon scientists stated their research was in accord with the scientific consensus on the effect of increased atmospheric CO2 on climate. Multiple documents mentioned potential adverse impacts such as flooding of coastal land masses due to the melting Antarctica sheets. Our view of this very complex subject over the years, over the decades, has mirrored that of the broader scientific community. In the early 1980s, the scientific community was just beginning to sound the alarm about increasing buildup of gases like carbon dioxide in the atmosphere. Researchers say increasingly large amounts of CO2 are accumulating in the atmosphere. They fear the earth will gradually become warmer, causing as yet uncertain but possibly disruptive changes in the Earth's climate 50 to 70 years from now. The discussions that have taken place inside our company among our scientists mirror the discussions that have been taking place in the work that's been taking place by the broader scientific community.

That's what the facts show. Scientists and a few politicians are beginning to worry that global energy planning does not take the greenhouse effect seriously enough. Those same computer models correctly predict the past climate of the Earth. They correctly predict the present climate of the Earth. It is reasonable that they are correctly predicting the future climate on the Earth, given the amount of CO2 and other greenhouse gases that were pouring into the atmosphere. Internal briefing documents for Exxon executives showed a science effort that was on the very cutting edge for its time. Graphs showed projections of temperature rise derived from increasingly complex atmospheric models, much like temperatures that have now been observed in the real world. Using global climate models developed by NASA, Exxon scientists agreed with the mainstream projections of approximately 3 degrees global average temperature rise for a doubling of atmospheric carbon dioxide with a rise of more than 10 degrees projected for polar regions, a phenomenon called polar amplification, which has now been actually observed. Exxon state-of-the-art climate modeling predicted a pattern of planetary warming, projecting the lower atmosphere to warm, while the upper atmosphere cooled, a telltale fingerprint of human-caused warming that has now also been observed in the real world.

This table from 1982 predicts conditions looking well into the future including the current year of 2015 where Exxon predicted atmospheric carbon levels for our time to within nine parts per million and a temperature rise to within a few tenths of degree of the best current observations. But in the following years, something happened at Exxon. The company seem to have forgotten the findings of its own experts. Proponents of the global warming theory say that higher levels of greenhouse gases are causing world temperatures to rise and the burning fossil fuels is the reason. The scientific evidence remains inconclusive as to whether human activities affect global climate. You know, there was no doubt that fossil fuels were the main driver of higher CO2 emissions and that CO2 emissions will lead to the climate change, right.

What Exxon was trying to figure out in the 70s and 80s was, when is it gonna hit and how bad is it gonna be but they knew it was gonna be bad like they admitted it is going to be bad, they used the word 'catastrophic' over and over again in documents. Fifteen years later, as the science became more certain, Exxon backed away from that and Lee Raymond talked about that. Many scientists agree there's ample time to better understand climate systems and considered policy options so there's simply no reason to take drastic action now. It's a pretty startling walk back from what, you know, the scientists said 15 years earlier. What he's concerned about and wants to know, is whether Exxon was using one set of scientific models to do its work in the Arctic, for example, where Exxon has been engaged in drilling and on the other hand, telling the public, telling its shareholders a very different set of facts about the state of climate change.

When you're making public disclosures to investors and when you're making public disclosures to government officials, there are laws regulating whether or not that's something that you really need to stand by so if there's evidence demonstrating purposeful concealment and it's too early to say then it really could be a big cloud over the company site. Exxon has funded a number of organizations that he said have been openly climate change deniers, he mentioned the American Enterprise Institute… Take for example, this hold 97% of scientists agree on global warming. That is an utterly fraudulent number. Has Exxon been funding these organizations? Well, the answer is yes, and I'll let those organizations respond for themselves. They're basically saying you and your industry are hiding the risks of climate change just like the tobacco companies hid the risks of smoking.

.. and then using tactics that are very similar to what the cigarette industry or tobacco industry used for many years even though the overwhelming scientific consensus was that smoking cigarettes is bad for you, they would find a few scientists that would disagree and then they would say, look, scientists disagree so that's essentially how they would try to trick the public into thinking that smoking is not that bad. There are allegations that ExxonMobil also funded research from somebody for example at the Smithsonian Institution without disclosing and without that person disclosing that he was going on a certain path whereby there were other scientists within ExxonMobil that might have had beliefs to the contrary. You have received over a million dollars and funds from coal and oil interests. The last grant you received from a funder with no ties to the energy industry was in 2002. That's over a decade ago. In recent weeks, ExxonMobil has accused Columbia School of Journalism of ethical misconduct in reporting this story. In response, Steve Coll, the Dean of the Columbia School of Journalism, has refuted those allegations in a detailed letter since published in The New York Times.

Meanwhile, 2015 will soon go down in history as the hottest year globally in the modern record with indications that 2016 will be even warmer. We can't be a 100% sure, but which is more prudent? Which is wiser? …to do nothing and hope that a mistake has been made, or to take these predictions seriously even if there's a chance the precautions you will take will be unnecessary..

Global Warming Explained

So, we've all heard of global warming and climate change and that carbon dioxide is causing our planet to heat up. But what exactly is the science behind it? To get there, we first have to understand the greenhouse effect The greenhouse effect is a process that maintains our planet's temperatures at liveable levels and is pretty much the reason life on Earth is even remotely possible. You see, the sun is constantly shooting energy towards the Earth mostly in the form of visible light which is then absorbed by our planet heating it up. This heat is then released from our planet's surface in the form of infrared light. Here's where greenhouse gases like carbon dioxide come in. Completely surrounding our planet these greenhouse gases create a blanket that allows visible light to freely pass through to the surface of the Earth but traps infrared light as it tries to leave therefore, slowing the release of the planet's heat back into space.

Keeping it just warm enough for us to sustain life. However, the more greenhouse gases there are in our atmosphere the harder it becomes for the planet's heat to escape and thus causing a global warming. and that's exactly what has been happening since 1750 or the industrial revolution. You see, before the industrial revolution the amount of carbon dioxide in our atmosphere lingered around 270 parts per million. But since then, it has increased at an exponential rate reaching over 400 parts per million this past October. The last time there was this much CO2 in our atmopshere human beings didn't exist. And there's no doubt that this unprecedented increase in CO2 is caused by human activity. Every living thing on Earth is made of carbon and this very element is continuously cycling to maintain an equilbirum through a process called the carbon cycle.

While things such as the death of plants and animals, the eruption of volcanoes, and wildfires release carbon into the atmosphere things like photosynthesis from plant life can help remove and sequester it. However, when the industrial revolution began humans started digging up and burning fossil fuels which are really just the decomposed remains of ancient plants and animals, to use as energy. In other words, we found stockpiles of carbon which has been kept deep beneath the Earth's surface and burned it for energy and in the process, added extreme amounts of carbon dioxide right into our atmosphere On top of this, we carried out deforestation on a massive scale and sabotaged what carbon filtration system the planet had provided us with. completely toppling the equilibirum between carbon emission and removal.

With over 200 years of throwing this life sustaining equilibirum off balance, action must be taken immediately to mitigate the impact of our changing climate. The first major step we can take is shifting to clean energy sources as soon as possible so as to prevent a further increase of greenhouse gases in our atmosphere. And when we look at the rapid growth of clean energy, this is a shift that we can make. All we need is a unified push towards a more environmentally conscious global society..

The lies of Global Warming

– Begins now 3×1, hier in Brazil TV. I am Luiz Carlos Azedo and today we will discuss the global warming. Our guest is the physicist and meteorologist Luiz Carlos Molion who questions the theories – let’s say, hegemonic in our days – related with this subject. Participate in this interview the journalist Zilda Ferreira, author of the Blog EDUCOM, which deals with environmental education and the journalist Efraim Neto, moderator of the Brazilian network of environmental journalism. <<The Earth, poetically identified as the Blue Planet, located in the Galaxy Via Lactia, orbits in the solar system and is distinguished by its unique atmosphere. Here, in millions of years life has evolved creating a complex system favorable for the existence of thousands of plant and animal species dependent on a food chain. The human being – extractivist – takes its sustenance from the land and the sea.

To enable the agriculture and industry uses various types of energy, obtained mostly from fossil fuels that generate tens of pollutants. On entering the second decade of the new millennium, the greatest challenge of humanity – that is to produce and develop without altering the atmosphere – presents itself as an emergency agenda for all nations. At the recent climate conference in Copenhagen, it became clear that rich countries, emerging or poor need to speak the same language, if they wish truly – in the medium term – contain the aggressions to the global environment.>> – We will start our interview with a question from a viewer. – Why do you say that there is no global warming? – I contend that there is no global warming because it already occurred in the past periods in which they were warmer than now. For example: If we get to the period of the years 800 to 1200 a.C -called Medieval Warm Period – Temperatures were higher than now and at that time the man not released carbon; not emitted carbon into the atmosphere. The Vikings came from Scandinavia and colonized the northern regions of Canada and southern Greenland and are now frozen regions.

So you can see that, that period was warmer than now. Between 1925 and 1946, there was also a very significant warming, which corresponds to approximately 70% of all this warming that – the people say – occurred in the last 150 years. At that time there was an increase of 0.4 degrees Celsius – between 1925 and 1946 – and that very probably due to increased solar activity in the first half of the twentieth century and the fact that in this period practically not occured any large volcanic eruption, so the atmosphere was clean – transparent – and entered more solar radiation and then increased the temperature. Notice! In 1946, after the second World War, the man threw to the atmosphere less than 10% of the carbon that launches today, so it is very difficult to say that the warming between 1925 and 1946 was due to human action. Later – after the war – that, in fact, there was an increase in industrialization, was emitted more carbon, but what happened? A global cooling between 1947 and 1976 and now this latest.

– Dr. Molion, you were commenting on the case of the Vikings, there is a french historian named Pierre Chani who was an expert of studies on European expansion and he said the Vikings not only conquered America because there was a period – immediately after their arrival, in that Arctic region – of cooling of the earth and there is a stream of scientists who defends a thesis against prevailing opinion – which says that there is a global warming – and say that we are on the verge – if we can use this expression – of a new global cooling. Is it? – Perfect. This period, which lasted more or less until 1250 a.C, was followed by what was called the Little Ice Age, which lasted from 1350 until 1920. I mean, very recent. – You assign to this cooling the barbarian invasions, because they have turned to the continent, because of cooling. – It was just the opposite, ie, the cold period leads to frustrations harvest and hunger. You have paintings made at that time showing that the river Thames was frozen.

Paintings from 1630 – 1650 show that fairs were made ​​over the frozen river. So, if I look at history, I would say this: that in the last million years the Earth has gone through nine ice ages. Each ice age lasts for a hundred thousand years. So nine times a hundred thousand gives nine hundred thousand. In one million, 90% of the time, the weather is colder than now. These ice ages are interrupted by warmer periods called interglacial. That we are living, Luiz Carlos, began about 15 thousand years ago and all of human history is summarized in the last ten thousand years. So we are in a period, as you said, on the eve of a new ice age. In fact we can be within a new ice age, since this our interglacial is already with 15 thousand years, according to paleoclimatic studies. So, there is a variability So, there is a variation upon that very slow fall that will take one hundred thousand years, practically, to get to 8 -10 degrees below what is today. On top of that there is a ripple of half a degree up, half a degree down. If we have that, as I said from 1925 to 1946, had a ripple down, a cooling from 1947 to 1976 – which was very bad for Brazil and around the world under the economic point of view – and now we had a small increase from 1977 to 1998 The “cue ball” now is the cooling.

– Is there a disparity of measuring instruments among the various periods? – Certainly, certainly. No doubt. – Would be the diagnosis today more accurate than before? – The biggest problem is not that, because when you put those long series, 100 -150 years, from cities like Paris, Vienna, Berlin… these cities were growing and if the thermometer was stuck in the same place, at the same meteorological station it would suffer the effects of urbanization. What is this effect of urbanization? Rains. If the area is vegetated, there is infiltration of water. The water evaporates and cools the surface. When the city then becomes urbanized, the asphalt and concrete causes the runoff of the water, that there will fall. So, today the cities do not have water to evaporate and the same heat of the Sun causes higher urban temperatures than its surroundings. São Paulo, for example, on the order of 3 degrees. There are studies here in Rio de Janeiro that show as well – depending on the region – the order of 3 – 4 degrees.

So, the effect that is known as Urban Heat Island interferes in the temperature. The same thermometer, even if it is calibrated will show higher temperatures. There is no way to eliminate this effect of urbanization on the measure. There is no way to eliminate. They say that if you select a basket of thermometers around the world that is located in the big cities, what will happen is the trend these thermometers show an ever increasing temperature. But when you use satellites covering the whole globe, including oceanic regions, it is shown that in the last 20 years a slight decrease occurred. Excluding the peak of El Niño, in 1997 – 1998, as El Niños tend to warm the atmosphere… – But does it not come back now, this year? – But this is pretty weak and must die now in February, maximum in March and will not affect, the contrary, it must turn to the cold La Niña. So, when you look at the data taken by satellites..

. – So will be the next year a cold year? – Yes, with cold winters. This is the trend, frosts in the south and southeast, cold temperatures and for us here, relatively drier during the dry season, ie, in the period from April to October, drier than the normal. – Professor, our scientific validation with respect to climate studies are based on numerical models… – That is it. – …and our system of climate research has evaluated and provided to society certain results. How do you evaluate this? – Well, Efraim. The models are nothing more than computer programs. Some are very sophisticated coming to have thousand lines, one million rows. These models attempt to reproduce the physical processes occurring in the atmosphere, but the atmosphere of the Earth depends on externs physical processes, eg, variation in solar activity, volcanic eruptions, tsunamis or earthquakes influence the heat distribution of oceans and also depends on the oceanic processes, for instance, that are treated very badly in these models, particularly with regard to the transport of heat. A climate model, for example, can not reproduce an El Niño. It can not reproduce this variation It can not reproduce this decadal variation of the Pacific lasting 25-30, where the Pacific warms in the tropics and then turns and cools.

The Pacific occupies 35% of the land surface and the atmosphere is heated from below. So, when the Pacific temperature changes, changes the atmosphere and changes the climate. These models make projections, Efraim, upon hypothetical scenarios that will never happen and the models in itself are disabled. So, for example, if I were to believe in this model, I would like to see this model predicting “the past”. Because of the past I already have data, is not it? And they did it, but the error was very large. The current models can not reproduce past climate. So, I have no guarantee that they will predict future climates, ie, model results are useless and do not lend themselves to planning. – Since the 70s, you have been showing the importance of the oceans in relation to climate, this from a global point of view. Since we are talking about climate change from a general point of view, what is the importance of having more advanced studies in relation to the oceans, since it seems to me that this has been of little relevance in relation to the data applied by the IPCC (Intergovermental of Climate Change)? – You are absolutely right, Efraim.

There is a tendency to leave the oceans outside of this climate control, when in reality they are extremely important to control the weather. We are talking about a planet that is 71% covered of water with an average depth of 3,800 meters, ie, this body of water is a huge heat reservoir that softens the climate change, so that the changes are not so big. The differences remained around more or less half degree up, half degree down thanks to the oceans. Recently we – the scientific community – developed a system of buoys – are more than 3,200 buoys – that are special. They dive up to 2,000 meters deep moving with the sea current for 9 and a half days, after they inflate, through a bladder that they have, and start to rise by measuring temperature and salinity. Arrives at the surface and transmits this data to the satellite. So, this system was completed in 2002 and the analysis of the datas from these buoys shows that the heat content of the oceans is declining.

This means that the global oceans are cooling and this cooling will lead to global cooling, not a warming. So, we have two very important factors: The sun, which has a cycle of 90 years and is now going into decline and will be so until the year 2032 and the oceans, which these buoys indicate that is cooling. These two phenomena that are fundamental; two basic controllers of the climate of the Earth will lead to a global cooling for the next 20 years, which is much worse than a warming..

UQx DENIAL101x 3.4.3.1 Daily and yearly cycle

Scientists predict that human-caused global warming should result in certain specific patterns of warming. Because these patterns are consistent with what we expect to happen as a result of the increased greenhouse effect, they’re considered “fingerprints” of the human influence on the Earth’s climate. As far back as 1865, physicist John Tyndall predicted that warming caused by the increased greenhouse effect should cause nights to warm faster than days, and winters to warm faster than summers. He was able to make this prediction by knowing that at night and during the winter, the Earth’s surface cools by radiating heat out to space. Greenhouse gases trap some of this heat, slowing that nighttime and winter cooling. The sun doesn’t shine all the time, the greenhouse effect is at work 24/7. Additionally the moon gives us a good counter-example because it doesn’t have an atmosphere. During the day, there’s nothing between the Sun and the Moon’s surface to block incoming sunlight.

At night, there are no greenhouse gases to trap the outgoing heat from the Moon. As a result, the difference between day and night temperatures is extreme. Daytime temperatures on the moon reach 120˚ Celsius, or 250˚ Fahrenheit. Nighttime temperatures fall below minus 200˚ Celsius, or minus 330˚ Fahrenheit. At the other extreme, Venus has a runaway greenhouse effect, much bigger than the greenhouse effect on Earth. Its temperature is an intense 460˚ Celsius, or 730˚ Fahrenheit. It’s like this day and night, all year long. Venus doesn’t even have seasons because its greenhouse effect is so strong. As these two examples illustrate, the bigger the greenhouse effect, the smaller the difference between daytime and nighttime temperatures. We know humans are increasing the greenhouse effect on Earth by burning more and more fossil fuels. If the greenhouse effect is increasing, then the difference between nighttime and daytime temperatures, and between winter and summer temperatures, should be shrinking. There’s a common myth that global warming is caused by the Sun rather than humans.

That myth fails to account for the available evidence. If the Sun were responsible, we would see an entirely different pattern of global warming. In that scenario, we would expect to see the Earth warming most when sunlight is bombarding the surface the most – during the daytime, and during the summer season. That means that if the Sun were responsible, we would see days warming faster than nights, and summers warming faster than winters. These expected patterns of global warming give scientists a clear test to determine whether the evidence matches the fingerprints of human or solar-caused warming. It took over 130 years before John Tyndall’s prediction was confirmed, but over the last few decades, surface measurements have found nights warming faster than days, and winters warming faster than summers. The difference between nighttime and daytime temperatures, and winter and summer temperatures, is shrinking, just as Tyndall anticipated would happen due to the increased greenhouse effect.

Fingerprints in the Earth’s climate change, like these changes in global warming patterns, clearly point to humans, and not the Sun, as the culprit responsible for global warming over the past century..

How do we stop global warming and should we even do it? Is it too late?

On the 21st of February, 1804., the first steam locomotive started its engine. It was using coal as a fuel and its main characteristic was the black smoke that it left behind. Soon after that, everyone was burning fossil fuels and polluting our precious air. Sadly, many people still don’t believe in global warming. The fact is that it is happening and it might already be too late to stop it. In the 1950s we started using weather balloons and satellites that could measure temperature of the Earths’ surface and the Earths’ temperature has been rising ever since we started measuring it. But why is this happening? You’ve probably heard about the Greenhouse effect. Greenhouse gases like water vapor, carbon dioxide, methane and others start building up in the atmosphere. As Sun heats the Earth, Greenhouse gases prevent that heat from escaping. Imagine that like putting a lid over your pan. So I hear you say “I didn’t like cold weather anyways, what’s the big deal with this Global warming?”.

Well, let me tell you this. Even a slight temperature rise is enough to cause dramatic transformation to our planet. There will be many types of disasters, including storms, heat waves, floods and droughts. Air pollution will get way worse by increasing ground level ozone which is created when pollution from cars and other sources reacts to sunlight and heat. Also expect higher death rates and higher wildlife extinction rates. Land animals that don’t adapt will quickly disappear from the face of this planet. If you feel hot, which you will, forget going for a swim in the ocean. Oceans will become way more acidic. Not only that that will be a threat to you, but to underwater life as well. Oh yes. And higher sea levels. New York, Los Angeles, Miami, Mumbai, Sydney, Rio de Janeiro. Gone.

So, have we passed the point of no return on climate change? Maybe. What do we do? There are three things we need to do if we want to save the Earth. 1 – Reduce our pollution; 2 – Remove the current greenhouse gases from our atmosphere and 3 – cool the Earth down. First of all, we must eliminate burning of coal, oil and gas. That is the hardest part. Harvesting energy from the Sun is probably our best bet. Get this: Buildings worldwide contribute around one third of all greenhouse gas emissions. To reduce that, it would be the best to invest in better insulation and other cost-effective, temperature-regulating steps. Vehicle transportation is the second leading source of gas emissions. So far, electric cars seem like a best bet to prevent that. After reducing our pollution, we need to remove existing greenhouse gases.

The most obvious way would be planting more trees. A similar solution is to plant algae on buildings. They will take care of our carbon dioxide problem. Another idea is to launch Sulphur particles into the atmosphere. It would block out the sunlight and therefore cool down the planet. Only downside is that it would make our sky look purple. We could launch tiny mirrors in space and make them reflect the sunlight, but that would require one trillion mirrors and would cost around $350 trillion. Probably the best idea is the one that Bill Gates and NASA came up with. They would build machines that would be placed into the ocean. Those machines would then launch sea water up into the atmosphere, creating clouds. Clouds would then reflect sunlight, cooling down our planet. But, those are all large scale projects that require a lot of funding to be done.

What could you do to help the planet? People often underestimate how much can they do just by doing little things, one of the excuses being “Why should I do it when other people won’t do it?”. Here’s the thing. You can do a lot just by yourself. A great bonus is that with saving the environment you’ll be saving money as well. Start by replacing regular light bulbs with fluorescent ones. Install a programmable thermostat. Move it down two degrees in winter and two degrees up in summer. That way you’ll save almost a tonne of co2 each year. Clean and replace filters on your furnace and air conditioner. Replace single-glazed windows with double-glazed ones. Cover your pots while cooking. Use the washing machine or dishwasher only when they are full. Take a shower instead of a bath. Use less hot water.

Don’t buy products that you don’t need. Reuse your shopping bag. Reduce waste. Carpool. Don’t leave an empty roof rack on your car. Regularly maintain your car. Do not waste fuel. Keep tires on your car inflated. Spread the cause, making sure your voice is heard. So, to summarize this video. Global warming is a very bad thing. We need to reduce burning of fossil fuels and we have to be as efficient as possible. We need more trees or algae to reduce the current co2 levels in the atmosphere. After all that has been done, we'll still need a way to cool down the Earth. Cloud machines seem like a best solution to this problem. Our prediction is that renewable sources of energy are our only hope. Solar panels, wind farms and similar ways of producing energy will take over. You’ll be cooking your lunch on an electric stove and lighting your candles with an electric lighter.

As car enthusiasts, the idea of an electric car saddens us. Automatic transmissions in vehicles that don’t make any noise. But we’d rather drive electric cars than live in a burning, stormy, flooded, polluted hell that could be our planet if we don’t do anything about it. Thanks for watching! If you liked this video, please give it a like. Share it with your friends, or else we’ll have absolutely no hope of saving the Earth. I’m serious. The future of Earth and humanity depends on you sharing this video. Do it. Oh yeah, and subscribe for more of our content..

Understanding Climate Change – How Greenhouse Gases Warm the Earth

Our atmosphere contains a number of different gases. It's mostly made up of nitrogen (about 78%) and oxygen, about 21%. But it also contains a number of gases known as greenhouse gases. These include water vapor, carbon dioxide, methane, nitrous oxide, ozone, and chlorofluorocarbons, which are usually man-made. They're called greenhouse gases because the properties of these gases allow them to retain heat leading to a warming of our atmosphere. Let's take a closer look at how this happens. Our sun produces light, which is composed of small particles called photons. These photons pass through the atmosphere and collide with the surface of the planet. If the surface of the planet is lightly colored, such as areas that are covered by ice or snow, the photons may be reflected back into space. However, if the surface is darker, such as forests or oceans, the photons are absorbed.

When this happens, some of the photons' energy is converted to heat, which radiates away from the surface. You experience this effect when you wear darker clothing outside. The dark fabric absorbs photons from the sun's rays, usually resulting in heat. This heat from photons, also called infrared radiation, radiates from the surface into the atmosphere. Most of this heat moves through the atmosphere and is lost into space. However, some of the heat interacts with greenhouse gases in the atmosphere, such as carbon dioxide water vapor, and methane. These molecules absorb the infrared energy and slowly release it back into the atmosphere over time. It's important to realize that greenhouse gases play an essential role in the maintenance of our planet's temperature, helping it to stay within the limits that allow life to flourish. Normally, these gases are needed at very small concentrations, often in the magnitude of parts per million. In fact, if our atmosphere had fewer greenhouse gases, the majority of the water on the planet would exist as ice. However, human activities, such as the burning of fossil fuels, and modern agricultural practices, have resulted in an increase in the concentration of some types of greenhouse gases – most notably carbon dioxide and methane.

This graph shows the progressive increase in carbon dioxide concentrations over the past five decades. The concentration of carbon dioxide in the atmosphere is now over 400 parts per million, which represents a greater than 20% increase since the 1960s. This increase in carbon dioxide concentrations, as well as other greenhouse gases such as methane, is directly related to an observed increase in global temperatures as shown on the graph here. This process is called global warming. As the planet warms, it causes changes in regional climates. This is commonly referred to as climate change. Scientists have already documented numerous cases where climate change is altering weather patterns, producing areas of severe storms, flooding, and droughts. At the current rate of greenhouse gas increase, it's projected that the average global temperature may increase by another 3.6 degrees F by 2100.

However, the exact amount of warming that will occur in the coming century depends largely on the energy choices we make now and in the coming years. Particularly since those choices directly influence how fast we put greenhouse gases into the atmosphere..

Attack on science

Hayhoe: These days, to get attacked, all we have to do is step foot off campus and tell anybody, even a local Kiwanis club, or a local church, or even a group of elementary school kids, that climate change is real, and then the angry letters start to flood in. Mann: Typically the attacks are not really about the science. The attack on the science is a proxy for what is really an effort to discredit science that may prove inconvenient for certain special interests. Oreskes: That’s when I started getting attacked. And that was when life sort of changed, it was a bit going through the looking glass. I started getting hate e-mail. What happened then was I mentioned to a couple of colleagues what was going on, and one of my colleagues at Scripps, at the Scripps Institution of Oceanography, said to me, “You should talk to Ben Santer.

Something sort of similar happened to him.” Santer: I remember sitting in a bar in Madrid with Stephen Schneider, the late Stephen Schneider, immediately after the final sentence had been agreed on in the 1995 report, a sentence that’s forever engraved on my memory. The balance of evidence suggests a discernible human influence on global climate. Here we are at this bar, and Steve says to me, “This changes everything, you know. Your life is going to be changed forever.” I had no idea what he was talking about. I really didn’t. Hayhoe: There is definitely a pattern of what happens: nasty e-mails, complaints to your university, requests for your e-mails, and a lot of attacks online. Mann: Often it takes the form of an attack on individual scientists. It’s part of the strategy of ad hominem attack.

Santer: Go after the scientist. Go after their integrity. Go after their funding. Make life miserable for them. Mann: I have received letters in the mail that in one case contained a while powder that I had to actually report to the FBI. They had to come to my office and investigate this and send this off to a lab to make sure that it wasn’t anthrax or some very dangerous substance that my entire department would have been subject to because of this. Santer: Then there’s the power of the Internet, which really was not available back in 1995, to harness your supporters to go after individual scientists, send them threatening e-mails or worse, and let them know, “We’re watching you. We don’t like you. We don’t like what you do.

” Mann: One of the tactics that you see in climate change denialism is an effort to spin and misrepresent peer reviewed scientific studies. So often studies that say one thing, for example, show that some aspect of climate change is even worse than we thought, will somehow be spun by climate change deniers as if it doesn’t provide evidence for concern. Oreskes: Clearly misrepresenting scientific information, cherry picking scientific data, one egregious example that we talk about in the book is an early work by Jim Hansen that Bill Nierenberg, Bob Jastrow and Fred Seitz take out of context and use it to argue that climate change is caused by the sun when, in fact, if you go back to the original paper, Hansen is arguing exactly the opposite. Santer: I think an additional weapon in the arsenal is Freedom of Information Act requests, which are being used not really to advance understanding or, again, shed light on complex scientific issues but as a tactic to threaten, to intimidate, to throw a spanner in the works to take up your time.

Mann: They will bully editors to try to get them to retract articles that are a threat to their case, their case being that climate change isn’t real, it’s not something to worry Oreskes: The weirdest day of my whole life practically was the day I got a phone call from a reporter in Tulsa, Oklahoma ,who said to me, “Are you aware of the fact that Senator James Imhofe is attacking you?” [laughter] I was like, at that time, I honestly didn’t know who Senator Imhofe was. In fact, I think I had been to Oklahoma maybe once but, I mean, and so I said, “No, I have no idea.” At first I thought he was making a mistake, this was some other, well, I have a very unusual name, so it didn’t seem plausible it was some other Naomi Oreskes. And then he had, he read to me from this speech that Imhofe was making and it was part of what we all are very familiar with now that I was a part of the “global conspiracy,” the scientific conspiracy to bring down global capitalism. And I remember thinking, “Conspiracy?!? Scientists are not that organised.” Santer: hacking e-mails, releasing them, all of these things. The technology has moved on since 1995, but it’s the same playbook: don’t really focus on the science and advancing understanding, contributing, but tear down, destroy.

Hayhoe: I think the best we can do is shield ourselves from the attacks and try not to dwell on them, unless it’s a safety issue, in which case we should take appropriate steps, and try to move on, focusing on what we want to achieve rather than what’s trying to hold us back. Mann: So if you are a prominent scientist, if you participate in the public discourse, as I’ve often said, you better develop a thick skin because you will be attacked personally. Hayhoe: My number one rule of thumb is: do not Google myself. I don’t want to see. My number two rule of thumb is to not read the comments section. I don’t want to know. Oreskes: One of the things that I think is really important us that by writing about these things and by documenting about it in a scholarly way with high standards of documentation, we can explain to our colleagues, our institutions, editors at journal, and the public and the media what this is. Because this is not a scientific debate.

I mean if I have one message that’s what my message has been all along and it still is: this is not a scientific debate; it’s a political debate. But it’s a political debate being made to look like a scientific debate. We now know why people do that. Because it’s a very very effective strategy because if you can make people think it’s a scientific debate then people will think it’s too soon to act. But if people see the truth, if they realise that this is a political debate, that it’s related to people’s ideologies to their values, structures, that gives a whole different cast. So it’s very very important for people to understand the character of what this thing is. Santer: Some things are worth fighting for. That perhaps was the most profound lesson for me back then: that a clear public understanding of the science, doing the kind of thing that you’re doing here, that was truly worth fighting for..

Carbon cycle

House: The carbon cycle is, very simply, it’s about the cycling of carbon through natural systems – through plants, through soils, through the ocean – and back out into the atmosphere. Le Quéré: In the natural carbon cycle, there’s a lot of fluxes of carbon dioxide, so the carbon goes in and out of the ocean, in and out of the terrestrial biosphere every year. House: The carbon is constantly flowing between these different systems and large amounts of carbon moves all the time. Le Quéré: I mean in the terrestrial biosphere, in the trees and the forests, it’s very easy to see. If you live in a place that has a forest area with seasons, you see in the winter the trees they have no leaves, and the spring comes and the leaves build up. This is all good carbon dioxide that goes in the leaves. And in the fall and in the autumn when the leaves fall down then their carbon is emitted back in the atmosphere.

So you have a huge signal there of CO2 going in and out of the atmosphere. House: So the ocean will take up the CO2, it dissolves in the surface of the ocean and also when the ocean will release CO2 to the atmosphere and that depends on the concentration of CO2 in the atmosphere and the concentration of CO2 in the ocean. And they form a balance with each other. There’s a continuous massive exchange of carbon dioxide between the atmosphere on land and the atmosphere on the ocean. That is roughly in balance until we introduce human change. Osborn: The experiment that we’re inadvertently perhaps conducting with the climate system is to move huge volumes of carbon from these stores undergrounds in the form of fossil fuels and bringing them to the surface and burning them and adding this carbon to the atmosphere. Le Quéré: What we’re doing now is putting everything out of balance, so we’re adding carbon to the atmosphere. It’s new carbon. It’s not part of the natural cycle.

It’s one that we’ve dug out of the fossil reservoir where they were stored, and we’ve put them back in the atmosphere. This is new carbon, and it puts the system out of balance. House: Although the human emissions are much smaller than the natural fluxes, the natural fluxes approximately are in balance and so they’re not causing an increase of carbon dioxide in the atmosphere. The human emissions, however are very rapid, and the natural systems don’t have time to respond to them. And so you get a net imbalance of raised carbon dioxide concentrations in the atmosphere. Lunt: It’s unequivocal that the amount of carbon dioxide in the atmosphere is increasing and is increasing fast and is increasing faster than ever. House: Oh the rate of change now is incredibly rapid, and what’s more it’s pushed us outside the bounds of what we’ve seen in terms of atmospheric concentration throughout the Ice Ages. Thompson: We have not had levels of C02 at 400 parts per million by volume in 800,000 years of history. House: In the Earth’s past throughout in and out of the Ice Ages, the concentration of CO2 in the atmosphere ranged between about 180 parts per million to 280 parts per mission.

And it took thousands of year for it to change between those states. The difference is now it’s gone up to 350 and even topping 400 parts per million on a single day basis. And that’s happened over a period of a couple hundred years. Friedlingstein: Every single generation is emitting more than the previous generation because emission of CO2 increased exponentially. We emit it so far, if you start from the beginning, which is like the industrial revolution in 1750 or something, when we start to burn fossil fuel, from that time up until today we emitted something like 2000 gigaton of CO2. More than half of this has been emitted over the last 50 years. Thompson: And we know where that CO2 is coming from because we do the isotopes of the carbon. We know it’s coming from fossil fuels. Le Quéré: So carbon is increasing in the atmosphere, but it doesn’t entirely stay there, so about half of the emission and maybe a bit more than half of the emission that we put in the atmosphere ends up in the natural environment. It ends up in the ocean and in the forest. Friedlingstein: For the carbon cycle today absorbed about half of the emissions we put in the atmosphere, so we emit, as I said, 40 gigaton of CO2 per year, about half of it, 20 gigaton of CO2 are taken back from the atmosphere by the land and by the ocean.

House: There’s a multitude of different processes that remove carbon dioxide from the atmosphere. So for example, CO2 from the atmosphere dissolves in the surface of the ocean and then that’s turned over and taken into the deep ocean. Really for that amount of CO2 to be completely removed from the atmosphere it has to be completely dissolved and go down into the deep ocean. And then we’re talking about geological timescales – so hundreds and thousands of years. Le Quéré: So what happens when we put carbon emissions into the atmosphere, new carbon from burning fossil fuel or from different station, what happens is this takes a long time for this carbon to readjust in the land and ocean. Eventually if we’re prepared to wait long enough, so that’s thousands of years, a lot of this carbon, maybe 70 percent will end up in the ocean, and the reason this takes time is that you have different adjustment times, so the CO2 goes in the surface ocean, it takes about 1 year to dissolve. But how it is transported from the ocean’s surface to the intermediate and to the deep ocean depends on the ocean circulation.

The ocean circulation takes hundreds to a thousand years to mix the entire ocean. That’s the timescale that is really relevant here is taking a molecule of CO2, we’ve put it in the atmosphere, how long is it going to take before it ends in the deep ocean? House: So about 65 to 80 percent of the carbon dioxide pulse that’s put into the atmosphere will be removed within about 2 to 200 years. The rest of it, the remaining 35 percent, will take between 2 and 20 millennia to be completely removed from the atmosphere. So roughly you have to think whatever we’re doing today, whatever CO2 is being emitted, roughly a third of it is going to stick around essentially forever really when you consider it in our lifetime. Pelto: We can’t change the atmosphere, the chemistry, with one of the main constituents carbon dioxide by 25 percent and expect nothing to happen. You change your diet by 25 percent. You decide you’re going to start consuming 25 percent more calories, and you don’t change your exercise or anything else. You can’t realistically expect nothing to happen. And that’s what you have to understand.

If we change fundamentally our atmosphere chemistry, we can’t expect climate to stay the same..

How Global Warming Works in Under 5 Minutes

You may have heard of global climate change, which is often called "global warming." Whether or not people accept that humans are causing global warming, most folks have an opinion about it. But how much do regular people understand the science of climate change? If you were asked to explain how global warming works, could you? Take a moment to try to explain to yourself how virtually all climate scientists think the Earth is warming. What is the physical or chemical mechanism? Don't feel bad; if you're anything like the people we've surveyed in our studies, you probably struggled to come up with an explanation. In fact, in one study we asked almost 300 adults in the U.S.– and not a single person could accurately explain the mechanism a global warming at a pretty basic level. This is consistent with larger surveys that have shown that people often lack knowledge about climate change.

But how can we make informed decisions without understanding the issues we're debating? Allow us to give you a short explanation of how global warming works: First, here is how Earth's temperature works without considering how humans influence it. The Earth absorbs light from the Sun, which is mostly visible light. To release that light-energy, Earth also emits light. But, because the Earth is cooler than the sun, it emits lower-energy infrared light. So, Earth's surface essentially transforms most to the visible light it gets from the sun into infrared light. Greenhouse gases in the atmosphere, such as methane and carbon dioxide, let visible light passed through, but absorb infrared light–causing the atmosphere to retain heat. This energy can be absorbed and emitted by the atmosphere many times before it eventually returns to outer space. The added time this energy hangs around has helped keep earth warm enough to support life as we know it.

Without this greenhouse effect–caused by these greenhouse gases in the atmosphere– the Earth's average surface temperature would be about 50 degrees Fahrenheit cooler, which is well below the freezing point for ice! So, how have humans change things? Since the dawn of the industrial age, around the year 1750, atmospheric carbon dioxide has increased by 40%– and methane has almost tripled. These increases cause extra infrared light absorption, meaning an extra greenhouse effect, which has caused Earth to heat above its typical temperature range. In other words, energy that gets to Earth has an even harder time leaving it, causing Earth's average temperature to increase– thus producing global climate change. In case you're wondering about what makes greenhouse gases special, here are two sentences of slightly technical information: Greenhouse gases such as carbon dioxide absorb infrared light because their molecules can vibrate to produce asymmetric distributions of electric charge, which match the energy levels of various infrared wavelengths.

In contrast, non-greenhouse gases such as oxygen–that is, 02–don't absorb infrared light, because they have symmetric charge distributions even while vibrating. To wrap, up we'll quickly summarize the mechanism global climate change: Earth transforms sunlight's visible energy into infrared light, and infrared energy leaves Earth slowly because it's absorbed by greenhouse gases. As people produce more greenhouse gases, energy leaves Earth even more slowly– raising Earth's temperature even more than it has already gone up. That's how global warming happens! This wasn't so hard to understand, right? In these few minutes you've hopefully become one of the few people who understand the mechanism of global climate change. Please share this video with others so you can help them understand how global warming works, too.

Thanks for listening!.

Making sense of the slowdown

The Earth’s climate is controlled by the energy balance at the top of the atmosphere. If more heat enters the atmosphere than leaves, then the planet warms. Adding heat trapping gases changes the balance, which in turn causes warming. Ocean heat measurements show that the planet is indeed absorbing heat. Despite this fact, it is often claimed that the global warming has stopped. This claim is inspired by evidence that warming of the atmosphere has been slower over the past one and a half decades. This slowdown is sometimes called the hiatus. However, there are other factors which affect the atmosphere over shorter periods. These can cause faster or slower warming of the atmosphere. To understand the slowdown in warming, we need to understand some of these factors.

If we look at the global surface temperature over the past 3 decades, there are big changes in temperature from year to year. We know the cause of some of these variations. One of the biggest is the El Nino cycle. El Nino is a phenomena in which heat is stored up in the western Pacific Ocean, and then released to the atmosphere in the eastern Pacific. This happens over the course of a few years. El Nino is not predictable, but we can track it in retrospect through sea surface temperature measurements. If we compare past El Nino cycles with temperature changes over the past three decades, we can see that there is a strong relationship between the two. El Nino years tend to be hot years. Recent years have been dominated by the cool phase of the cycle. This is responsible for some of the slowdown in warming. However, El Nino doesn’t explain everything. There are cooler periods in the early eighties and nineties which don’t fit the El Nino cycle.

These were caused by two major volcanic eruptions, El Chichon and Pinatubo. Dust from the volcanoes spread in the upper atmosphere, cooling the surface. Smaller eruptions happen all the time, but can also affect temperatures. There has been an increase in the number of small eruptions over the past few years, offsetting a bit of the greenhouse warming. Another factor is the solar cycle. Satellites tell us that the sun varies in brightness with the sunspot cycle. The last cycle has been particularly weak. A dim sun also offsets a little bit of warming. Yet another factor is pollution. Rapid industrialisation in Asia has led to more particulate pollution in the atmosphere, which also has a cooling effect. The final factor is in the observations themselves. Two of the major temperature data providers, the UK Met Office and NOAA, don’t include the Arctic in their global temperature calculation, because there are no weather stations there.

But the Arctic has been warming faster than anywhere else on the planet. Missing it out leads to an underestimation of the rate of warming. To recap, greenhouse gases have continued to grow over the last one and a half decades. But over the same period, volcanoes, the weak sun and pollution have had a cooling effect, and the rate of warming has been underestimated as well. Two recent studies have put all of these together. If we ignore the short term influences, climate models predict faster warming than we have observed. However, if we use global temperature estimates, and add the influence of El Nino, volcanoes, the weak sun and pollution into the models, then the agreement is good. What can we conclude from this? When we put everything we know into the models, the answers match what we observe. So the slowdown in warming makes sense in retrospect, and doesn’t give us a reason to doubt the models.

However, we couldn’t have predicted it in advance, because we can’t predict volcanoes, pollution or the sun. The slowdown in warming has created a whole family of myths with different levels of sophistication. At one extreme, it is possible to argue that the hiatus should reduce our estimates of climate sensitivity. This is a genuine scientific argument, although the analysis we have just seen suggests that no reduction is required. At the other extreme, it is sometimes claimed that the hiatus disproves the role of CO2 in global warming. They claim that CO2 has increased, but the world hasn’t warmed. This is an example of a strawman, and a complex cause fallacy. Climate science doesn’t claim that CO2 is the only factor which affects temperature. This is why the hiatus is so hard to deal with. The myths may be wrong, but they are simple and convincing. The complex cause fallacy exists because people like things to be simple, but explaining the complex drivers of climate is hard. But in the end, all the hiatus myths revolve around drawing attention away from the big picture. When we look at the big picture, the hiatus does not change our understanding of human caused global warming.

.