RESEARCHERS REVEAL A HIDDEN WORLD UNDER ANTARCTICA

RESEARCHERS REVEAL A HIDDEN WORLD UNDER ANTARCTICA There is a hidden mysterious world hidden away under Antarctica and researchers have revealed the giant wetlands that are 800 meters beneath the ice. The Whillans Ice Stream Subglacial Access Research Drilling, or WISSARD for short, a project that was financed by National Science Foundation, has taken researchers that step nearer to discovering just what lies underneath the ice that covers the majority of Antarctica. LAKE WHILLANS IS UNDER 800 METERS OF ICE IN WESTERN ANTARCTICA Reports have indicated that Lake Whillans, which was first located in 2007 and which covers more than 20 square miles, is under the 800 meters of ice that is found in Western Antarctica and researchers have said that this is very similar to the wetland. The researchers are hoping that more studies will mean they can understand better how the level of the sea rises and how the ice is behaving in response to the global warming. RESEARCHERS ARE EXCITED ABOUT RICH DATASET OF LAKES RELATED ARTICLES Researchers Reveal: The Egyptian Civilization Is Thousands Of Years Older Than ThoughtRussian Researchers Reveal A Mummified Alien Helen Amanda Fricker from Scripps Institute said that it was amazing to think that people did not know that the lake was in existence until just a decade ago.

It was Fricker that had first found sub-glacial Lake Whillans from satellite data back in 2007. She went on to say that it was exciting to be able to see the lakes rich dataset and that the new data is helping them to understand the function of the lakes as a part of the ice-sheet system. The sub-glacial Lake is fed by ice which has a small amount of seawater in it from the ancient marine sediments that are on the lakes seabed. The lake's water drains periodically into the ocean through channels that are connected to the lake, but they do not have energy enough to carry much of the sediment. NEW DATA WILL LEAD TO BETTER UNDERSTANDING OF MECHANICS OF LAKE WHILLANS Researchers have said that the new data should give them a much better understanding of the mechanics and biogeochemistry of Lake Whillans. It was also said that the data is going to help them to improve the current models and tell them more about how the sub-glacial lake systems in Antarctica interact with any ice that is underneath the surface along with the sediments that are found under it. In January 2013 three different papers analyzed the studies following the WISSARD project having managed to drill successfully down into the sheet of ice to reach subglacial Lake Whillans, to get some samples of sediment along with water samples that had been isolated from any direct contact with the atmosphere of the Earth for many thousands of years.

The Geology and Earth and Planetary Science Letters journal published two of the more interesting of the papers. Alexander Michaud from the Montana State University and the lead author said that data had come from the 15-inch long core lake sediment so that the water chemistry along with the sediment could be characterized. LAKE WATER MOSTLY COMES FROM MELTING ICE AT BASE COVERING LAKE Researchers found that the water in the lake originates mostly from the melting ice at the base of the sheet that covers the sub-glacial lake and that there had been very little contribution from any seawater, trapped under the ice in the sediment during the last inter-glacial period. A second paper had been published by lead author Timothy Hodson from the Northern Illinois University in which he along with colleagues took a look at the core sediment that had been retrieved from the lake with the hope of trying to find out more about the ice sheet and the relationship with the sediments under it and the subglacial hydrology.

Their discovery found that many floods had passed through the lake but that the floods flow was lacking in energy when it came to eroding the extensive drainage channels. The researchers came to the conclusion that the environment underneath Antarctica is similar to that of wetlands in the coastal plain that is found in other parts on the planet. Antarctica of course, broke away from Gondwana around 25 million years ago; around 170 million years ago it had been part of the Gondwana supercontinent before breaking away. Research shows that Antarctica has not always been the very dry and cold region that we know to be covered in sheets of ice. Throughout its long history, it was further to the north and this meant that it experienced a climate that was either tropical or temperate, which would have meant that it had been covered in forest, along with being home to many ancient life forms.

.

Ocean Temperatures – Changing Planet

The world’s oceans cover more than 70 percent of Earth’s surface. Millions of creatures, great and small, call the oceans home. These massive bodies of water play a crucial role in maintaining the planet’s delicate environmental balance, from supporting a complex food chain, to affecting global weather patterns. But rising air temperatures are warming the oceans and bringing dramatic impacts felt around the globe. Dr. TONY KNAP (Bermuda Institute of Ocean Sciences): One of the things warming does in, say areas off the United States, it creates a much bigger pool of warm water in the surface of the ocean that lends a huge amount of energy to hurricanes and tropical cyclones. THOMPSON: Dr. Tony Knap is the director of the Bermuda Institute of Ocean Sciences, or BIOS. Famous for its luxurious golf courses and pink sand beaches, Bermuda is also home to one of the world’s leading institutes for ocean studies, with a focus on water temperatures.

KNAP: Here off Bermuda, we have probably a better view of it then many other people are going to have over time. THOMPSON: Bermuda is located over 600 miles, or almost 1,000 kilometers, from the coast of North Carolina, in an area of the Atlantic Ocean called the Sargasso Sea. KNAP: We like to think of the Sargasso Sea in the North Atlantic as the canary in the coalmine. It’s the smallest ocean, it’s between North America and Europe and we think if we are going to see changes, we will see them first here in the ocean off Bermuda. THOMPSON: Scientists at BIOS have been measuring the temperature of the ocean since 1954, making it one of the world’s longest ongoing studies of ocean data. KNAP: Well you measure the temperature of the ocean in many ways. In the old days you used to do it with buckets and thermometers. Now you use sophisticated instruments called conductivity, temperature and depth recorders. THOMPSON: These recorders, called CTDs, are large measuring instruments lowered deep into the water at specific locations in the ocean. On this day, Knap and his team are headed to “Station S.

” QUENTIN LEWIS, Jr. (Captain, R/V Atlantic Explorer): The weather is not going to be our friend today, unfortunately. The winds out of the west, it’s 35-40 and some higher gusts. The seas are anywhere from 14 to 16 feet or higher. THOMPSON: Lowered to a depth of three kilometers, or just under two miles, the CTD records temperature, salinity, carbon dioxide levels, and captures water samples. KNAP: This is a screen for the output on the CTD. The temperature will be in red, blue is salinity or the saltiness, and yellow is the oxygen content. THOMPSON: At BIOS, all of the data is then carefully logged and analyzed. Dr. NICK BATES (Bermuda Institute of Ocean Sciences): With this instrument we can see changes that happen over the season, over the year. And then from year to year.

THOMPSON: Using ocean temperature data going back several decades, BIOS research can trace the warming trend. In the past 56 years, it has risen half a degree Celsius. KNAP: Since 1954 we’ve seen, on average, the temperature increasing by a small amount, an equivalent to what is really a half a watt per year which is, doesn’t seem like a lot but over the whole of the ocean, it’s a lot. THOMPSON: What’s a half a watt? KNAP: It’s not much. It’s about a 100th of a degree per year. It’s not a lot. THOMPSON: But that small a difference can make, have a huge impact? KNAP: Yeah. THOMPSON: Really? KNAP: Yeah, because it’s going on every year. You think about how big the ocean is, and how deep it is, and how much energy it has, I mean it’s a tremendous source of heat. THOMPSON: So where is that warming coming from? KNAP: The warming we believe is to due to changes in CO2 in the atmosphere, the atmosphere getting warmer and the surface of the ocean getting warmer.

And that transfer of heat is being made into the ocean. THOMPSON: So what is the impact of a warmer ocean? The rising temperature causes the ocean to expand, and raises sea levels. KNAP: The tides going up by 3.2 millimeters a year. Half of that is attributed to the ocean warming down to 700 meters. The oceans on average 4,000 meters deep so it has a lot more to expand. THOMPSON: Warming temperatures also impact the growth rates of certain organisms at the very bottom of the ocean food chain, like phytoplankton. And so if you see changes in phytoplankton, does that mean that we are going to see changes in the food chain at the ocean? KNAP: If the organisms that eat those organisms, OK, eat the plankton, for example, can’t eat those plankton, then yes you’ll see changes. THOMPSON: And the small changes being recorded could bring even stronger storms.

This report published in 2005 in Science Magazine shows the gradual rise of the number of Category 4 and 5 hurricanes over recent years. An increase in storm intensity like this many scientists believe is the result of the warming of the oceans. KNAP: You think about how big the ocean is, and how deep it is, and how much energy it has. Even if you look at difference in hurricanes intensity, etc., one, one and a half degree centigrade in the water column of one hundred meters makes a massive amount of difference. THOMPSON: Small changes with big consequences for the creatures in the sea and all the people who live along the coasts..